Abstract
Variational auto-encoders (VAE) have been widely used in process modeling due to the ability of deep feature extraction and noise robustness. However, the construction of a supervised VAE model still faces huge challenges. The data generated by the existing supervised VAE models are unstable and uncontrollable due to random resampling in the latent subspace, meaning the performance of prediction is greatly weakened. In this paper, a new multi-layer conditional variational auto-encoder (M-CVAE) is constructed by injecting label information into the latent subspace to control the output data generated towards the direction of the actual value. Furthermore, the label information is also used as the input with process variables in order to strengthen the correlation between input and output. Finally, a neural network layer is embedded in the encoder of the model to achieve online quality prediction. The superiority and effectiveness of the proposed method are demonstrated by two real industrial process cases that are compared with other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.