Abstract
We steered comparative analysis of manifold supervised dimension reduction methods by assimilating customary multiobjective standard metrics and validated the comparative efficacy of supervised learning algorithms in reliance on data and sample complexity. The question of sample and data intricacy is deliberated in dependence on automating selection and user-purposed instances. Different dimension reduction techniques are responsive to different scales of measurement and supervision of learning is also discussed comprehensively. In line with the prospects, each technique validated diverse competence for different datasets and there was no mode to gauge the general ranking of methods trustily available. We especially engrossed the classifier ranking and concocted a system erected on weighted average rank called weighted mean rank risk adjusted model (WMRRAM) for consensus ranking of supervised learning classifier algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.