Abstract

The recent advancement of the Internet of Things (IoT) in the fields of smart vehicles and integration empowers all cars to join to the internet and transfer sensitive traffic information. To enhance the security for the Internet of Vehicles (IoV) and maintain privacy, this paper proposes an ultralight authentication scheme. Physical unclonable function (PUF), supervised machine learning (SML), and XOR functions are used to authenticate both server and device in a two message flow. The proposed framework can authenticate devices with a low computation time (3 ms) compared to other proposed frameworks while protecting against existing potential threats. Furthermore, the proposed framework needs low overhead (21 bytes) that avoids adding to the IoV network’s workload. Moreover, SML makes weak PUF responses as random numbers to provide the functionality of a strong PUF for the framework. In addition, both formal (Burrows, Abadi, Needham (BAN) logic) and informal analysis are presented to show the resistance against known attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call