Abstract
Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product(GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. Sugarcane is cultivated in tropics and subtropic regions, on a wide range of soils from fertile well-drained mollisols to through heavy cracking vertisols, infertile acid oxisols, peaty histosols, to rocky andisols. Minimum moisture of 60cms, rich water supply and plenty of sunshine. In this paper, a novel approach to sugarcane yield forecasting in Karnataka, India region using Long Term Time Series(LTTS), weather-and-soil attributes, Normalized Vegetation Index(NDVI) and Supervised Machine Learning(SML) algorithms have been proposed. Sugarcane cultivation life cycle(SCLC) in the Karnataka region is about 12 months, with plantation beginning at three different seasons in weather condition. Our approach has been verified using historical dataset and results have shown that our approach has successfully modeled crop prediction. The application of the Custom-Kernel gives us a considerable boost in accuracy with SVM-Kernel Multiple giving 86.31% of accuracy, SVM-RBF kernel in second with an accuracy of 83.40%, GPR producing an accuracy score of 81.75%, Lasso giving an accuracy score of 26.81% and Kernel Ridge-RBF with the least accuracy score of 21.46% for final yield prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.