Abstract
This paper analyses mechanical property prediction through Machine Learning for continuous fiber-reinforced polymer matrix composites printed using the novel Material Extrusion Additive Manufacturing technique. The composite is formed by a nylon-based matrix and continuous fiber (carbon, Kevlar, or fiberglass). From the literature, the elastic modulus and tensile strength were taken along with printing parameters like fiber content, fiber fill type, matrix lattice, matrix fill density, matrix deposition angle, and fiber deposition angle. Such data were fed to several supervised learning algorithms: Ridge Regression, Bayesian Ridge Regression, Lasso Regression, K-Nearest Neighbor Regression, CatBoost Regression, Decision Tree Regression, Random Forest Regression, and Support Vector Regression. The Machine Learning analysis confirmed that fiber content is the most influential parameter in elasticity (E) and strength (σ). The results show that the K-Nearest Neighbors and CatBoost provided the closest predictions for E and σ compared to the other models, and the tree-based model presented the narrowest error distribution. The computational metrics point to a size versus prediction time tradeoff between these two best predictors, and adopting the prediction time as the most relevant criterion leads to the conclusion that the CatBoost model can be considered, when compared to the others tested, the most appropriate solution to work as a predictor in the task at hand.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.