Abstract

We adopt a supervised learning approach to predict runtimes of batch production scheduling mixed-integer programming (MIP) models with the aim of understanding what instance features make a model computationally expensive. We introduce novel features to characterize instance difficulty according to problem type. The developed machine learning models trained on runtime data obtained from a wide variety of instances show good predictive performances. Then, we discuss informative features and their effects on computational performance. Finally, based on the derived insights, we propose solution methods for improving the computational performance of batch scheduling MIP models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.