Abstract
We can state undoubtedly that Bangla language is rich enough to work with and implement various Natural Language Processing (NLP) tasks. Though it needs proper attention, hardly NLP field has been explored with it. In this age of digitalization, large amount of Bangla news contents are generated in online platforms. Some of the contents are inappropriate for the children or aged people. With the motivation to filter out news contents easily, the aim of this work is to perform document level sentiment analysis (SA) on Bangla online news. In this respect, the dataset is created by collecting news from online Bangla newspaper archive. Further, the documents are manually annotated into positive and negative classes. Composite process technique of “Pipeline” class including Count Vectorizer, transformer (TF-IDF) and machine learning (ML) classifiers are employed to extract features and to train the dataset. Six supervised ML classifiers (i.e. Multinomial Naive Bayes (MNB), K-Nearest Neighbor (K-NN), Random Forest (RF), (C4.5) Decision Tree (DT), Logistic Regression (LR) and Linear Support Vector Machine (LSVM)) are used to analyze the best classifier for the proposed model. There has been very few works on SA of Bangla news. So, this work is a small attempt to contribute in this field. This model showed remarkable efficiency through better results in both the validation process of percentage split method and 10-fold cross validation. Among all six classifiers, RF has outperformed others by 99% accuracy. Even though LSVM has shown lowest accuracy of 80%, it is also considered as good output. However, this work has also exhibited surpassing outcome for recent and critical Bangla news indicating proper feature extraction to build up the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.