Abstract
Neural networks that are trained to perform specific tasks must be developed through a supervised learning procedure. This normally takes the form of direct supervision of synaptic plasticity. We explore the idea that supervision takes place instead through the modulation of neuronal excitability. Such supervision can be done using conventional synaptic feedback pathways rather than requiring the hypothetical actions of unknown modulatory agents. During task learning, supervised response modulation guides Hebbian synaptic plasticity indirectly by establishing appropriate patterns of correlated network activity. This results in robust learning of function approximation tasks evenwhenmultiple output units representing different functions share large amounts of common input. Reward-based supervision is also studied, and a number of potential advantages of neuronal response modulation are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.