Abstract
The development of programmable or trainable molecular circuits is an important goal in the field of molecular programming. Multilayer, nonlinear, artificial neural networks are a powerful framework for implementing such functionality in a molecular system, as they are provably universal function approximators. Here, we present a design for multilayer chemical neural networks with a nonlinear hyperbolic tangent transfer function. We use a weight perturbation algorithm to train the neural network which uses a simple construction to directly approximate the loss derivatives required for training. We demonstrate the training of this system to learn all 16 two-input binary functions from a common starting point. This work thus introduces new capabilities in the field of adaptive and trainable chemical reaction network (CRN) design. It also opens the door to potential future experimental implementations, including DNA strand displacement reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.