Abstract

We propose and apply simple machine learning approaches for recognition and classification of complex non-collinear magnetic structures in two-dimensional materials. The first approach is based on the implementation of the single-hidden-layer neural network that only relies on the z projections of the spins. In this setup one needs a limited set of magnetic configurations to distinguish ferromag- netic, skyrmion and spin spiral phases, as well as their different combinations in transitional areas of the phase diagram. The network trained on the configurations for square-lattice Heisenberg model with Dzyaloshinskii-Moriya interaction can classify the magnetic structures obtained from Monte Carlo calculations for triangular lattice and vice versa. The second approach we apply, a minimum distance method performs a fast and cheap classification in cases when a particular configuration is to be assigned to only one magnetic phase. The methods we propose are also easy to use for analysis of the numerous experimental data collected with spin-polarized scanning tunneling microscopy and Lorentz transmission electron microscopy experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.