Abstract
Text documents usually contain high dimensional non-discriminative (irrelevant and noisy) terms which lead to steep computational costs and poor learning performance of text classification. One of the effective solutions for this problem is feature selection which aims to identify discriminative terms from text data. This paper proposes a method termed “Hebb rule based feature selection (HRFS)”. HRFS is based on supervised Hebb rule and assumes that terms and classes are neurons and select terms under the assumption that a term is discriminative if it keeps “exciting” the corresponding classes. This assumption can be explained as “a term is highly correlated with a class if it is able to keep “exciting” the class according to the original Hebb postulate. Six benchmarking datasets are used to compare HRFS with other seven feature selection methods. Experimental results indicate that HRFS is effective to achieve better performance than the compared methods. HRFS can identify discriminative terms in the view of synapse between neurons. Moreover, HRFS is also efficient because it can be described in the view of matrix operation to decrease complexity of feature selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.