Abstract

Nearly 1% of the global population has Epilepsy. Forecasting epileptic seizures with an acceptable confidence level, could improve the disease treatment and thus the lifestyle of the people who suffer it. To do that the electroencephalogram (EEG) signal is usually studied through spectral power band filtering, but this paper proposes an alternative novel method of preprocessing the EEG signal based on supervised filters. Such filters have been employed in a machine learning algorithm, such as the K-Nearest Neighbor (KNN), to improve the prediction of seizures. The proposed solution extends with this novel approach an algorithm that was submitted to win the third prize of an international Data Science challenge promoted by Kaggle contest platform and the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH) and Mayo Clinic. A formal description of these preprocessing methods is presented and a detailed analysis in terms of Receiver Operating Characteristics (ROC) curve and Area Under ROC curve is performed. The obtained results show statistical significant improvements when compared with the spectral power band filtering (PBF) typical baseline. A trend between performance and the dataset size is observed, suggesting that the supervised filters bring better information, compared to the conventional PBF filters, as the dataset grows in terms of monitored variables (sensors) and time length. The paper demonstrates a better accuracy in forecasting when new filters are employed and its main contribution is in the field of machine learning algorithms to develop more accurate predictive systems.

Highlights

  • An estimation of the World Health Organization mention that about 50 million people around the world have Epilepsy [1]

  • Our alternatives consider the difference of the means (DM), the difference of the variance between the two clases (VAR), a linear combination which tries to trade off the variance and the mean (TVM) and a very simplified preprocessing method which consists in the difference of the square (DS)

  • The present paper extends the work carried out in detecting preictal states using an algorithm that was submitted to win the third prize of an international research challenge proposed by the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH) and Mayo Clinic through the Kaggle platform

Read more

Summary

Introduction

An estimation of the World Health Organization mention that about 50 million people around the world have Epilepsy [1]. Epilepsy is a common neurological disorder affecting nearly 1% of the global population. An epileptic seizure starts with a storm of abnormal electrical activity in the brain. As it is stated in [2], this activity usually begins in one or two specific brain regions and can expand to other parts of the brain.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call