Abstract

Variable star analysis and classification is an important task in the understanding of stellar features and processes. While historically classifications have been done manually by highly skilled experts, the recent and rapid expansion in the quantity and quality of data has demanded new techniques, most notably automatic classification through supervised machine learning. We present an expansion of existing work on the field by analyzing variable stars in the {\em Kepler} field using an ensemble approach, combining multiple characterization and classification techniques to produce improved classification rates. Classifications for each of the roughly 150,000 stars observed by {\em Kepler} are produced separating the stars into one of 14 variable star classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.