Abstract
With the adoption of autonomous systems in higher levels of autonomy, large-scale, complex and dynamic systems are becoming commonplace. Ensuring safe operation of safety-critical autonomous systems is paramount, typically approached through risk assessment. Two challenges associated with using traditional risk assessment methods for complex systems are that these systems are dynamic (i.e., their state changes over time) and interactions between subsystems and components may lead to unpredictable behaviors and impact on the surrounding environment and other systems in the close vicinity. Dynamic probabilistic risk assessment (DPRA) methods are possible solutions to these challenges, where the dynamic and uncertain nature of the systems is considered. The methods, however, usually face combinatorial explosion related to hazards and scenarios, which make their practical application prohibitive; in the DPRA literature, this problem is known as the state explosion problem. In this paper, we present a literature review on methods for DPRA, with focus on the existing solutions to the state explosion problem. Specifically, we analyze and compare these solutions in terms of computational time complexity, traceability and state–space coverage. Finally, we discuss the comparisons and propose potential paths to improved solutions for the state explosion problem based on the knowledge gained in the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.