Abstract

This paper presents a supervised contrastive learning (SCL) framework for respiratory sound classification and the hardware implementation of learned ResNet on field programmable gate array (FPGA) for real-time monitoring. At the algorithmic level, multiple techniques such as features augmentation and MixUp are combined holistically to mitigate the impact of data scarcity and imbalanced classes in the training dataset. Bayesian optimization further enhances the classification accuracy through parameter tuning in pre-processing and SCL. The proposed framework achieves 0.8725 total score (including runtime score) on a ResNet-18 model in both event and record multi-class classification tasks using the SJTU Paediatric Respiratory Sound Database (SPRSound). In addition, algorithm-hardware co-optimizations including Quantization-Aware Training (QAT), merge of network layers, optimization of memory size and number of parallel threads are performed for hardware implementation on FPGA. This approach reduces 40% model size and 70% computation latency. The learned ResNet is implemented on a Xilinx Zynq ZCU102 FPGA with 16ms latency and less than 2% inference score degradation compared to the software model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.