Abstract
Alzheimer's disease is incurable at the moment. If it can be appropriately diagnosed, the correct treatment can postpone the patient's illness. To aid in the diagnosis of Alzheimer's disease and to minimize the time and expense associated with manual diagnosis, a machine learning technique is employed, and a transfer learning method based on 3D MRI data is proposed. Machine learning algorithms can dramatically reduce the time and effort required for human treatment of Alzheimer's disease. This approach extracts bottleneck features from the M-Net migration network and then adds a top layer to supervised training to further decrease the dimensionality and delete portions. As a consequence, the transfer network presented in this study has several advantages in terms of computational efficiency and training time savings when used as a machine learning approach for AD-assisted diagnosis. Finally, the properties of all subject slices are combined and trained in the classification layer, completing the categorization of Alzheimer's disease symptoms and standard control. The results show that this strategy has a 1.5 percentage point better classification accuracy than the one that relies exclusively on VGG16 to extract bottleneck features. This strategy could cut the time it takes for the network to learn and improve its ability to classify things. The experiment shows that the method works by using data from OASIS. A typical transfer learning network's classification accuracy is about 8% better with this method than with a typical network, and it takes about 1/60 of the time with this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and mathematical methods in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.