Abstract
Due to its storage efficiency and fast query speed, cross-media hashing methods have attracted much attention for retrieving semantically similar data over heterogeneous datasets. Supervised hashing methods, which utilize the labeled information to promote the quality of hashing functions, achieve promising performance. However, the existing supervised methods generally focus on utilizing coarse semantic information between samples (e.g. similar or dissimilar), and ignore fine semantic information between samples which may degrade the quality of hashing functions. Accordingly, in this paper, we propose a supervised hashing method for cross-media retrieval which utilizes the coarse-to-fine semantic similarity to learn a sharing space. The inter-category and intra-category semantic similarity are effectively preserved in the sharing space. Then an iterative descent scheme is proposed to achieve an optimal relaxed solution, and hashing codes can be generated by quantizing the relaxed solution. At last, to further improve the discrimination of hashing codes, an orthogonal rotation matrix is learned by minimizing the quantization loss while preserving the optimality of the relaxed solution. Extensive experiments on widely used Wiki and NUS-WIDE datasets demonstrate that the proposed method outperforms the existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.