Abstract

The electricity system inherited from the 19th and 20th centuries has been a reliable but centralized system. With the spreading of local, distributed and intermittent renewable energy resources, top-down central control of the grid no longer meets modern requirements. For these reasons, the power grid has been equipped with smart meters integrating bi-directional communications, advanced power measurement and management capabilities. Smart meters make it possible to remotely turn power on or off to a customer, read usage information, detect a service outage and the unauthorized use of electricity. To fully exploit their capabilities, we foresee the usage of distributed supervised classification algorithms. By gathering data available from meters and other sensors, such algorithms can create local classification models for attack detection, online monitoring, privacy preservation, workload balancing, prediction of energy demand and incoming faults. In this paper we present a decentralized distributed classification algorithm based on proximal support vector machines. The method uses partial knowledge, in form of data streams, to build its local model on each meter. We demonstrate the performance of the proposed scheme on synthetic datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.