Abstract

This paper explores the robustness of supervector-based speaker modeling approaches for speaker verification (SV) in noisy environments. In this paper speaker modeling is carried out in two different frameworks: (i) Gaussian mixture model-support vector machine (GMM-SVM) combined method and (ii) total variability modeling method. In the GMM-SVM combined method, supervectors obtained by concatenating the mean of an adapted speaker GMMs are used to train speaker-specific SVMs during the training/enrollment phase of SV. During the evaluation/testing phase, noisy test utterances transformed into supervectors are subjected to SVM-based pattern matching and classification. In the total variability modeling method, large size supervectors are reduced to a low dimensional channel robust vector (i-vector) prior to SVM training and subsequent evaluation. Special emphasis has been laid on the significance of a utterance partitioning technique for mitigating data-imbalance and utterance duration mismatches. An adaptive boosting algorithm is proposed in the total variability modeling framework for enhancing the accuracy of SVM classifiers. Experiments performed on the NIST-SRE-2003 database with training and test utterances corrupted with additive noises indicate that the aforementioned modeling methods outperform the standard GMM-universal background model (GMM-UBM) framework for SV. It is observed that the use of utterance partitioning and adaptive boosting in the speaker modeling frameworks result in substantial performance improvements under degraded conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.