Abstract
It is well documented that ultrasound-induced lung hemorrhage can occur in mice, rats, rabbits, pigs, and monkeys. The objective of this study was to assess the role of the ultrasound beamwidth (beam diameter incident on the lung surface) on lesion threshold and size. A total of 144 rats were randomly exposed to pulsed ultrasound at three exposure levels and four beamwidths (12 rats per group). The three in situ peak rarefactional pressures were about 5, 7.5, and 10 MPa. The four 19-mm-diameter focused transducers had measured pulse-echo -6-dB focal beamwidths of 470 microm (2.8 MHz; f/1), 930 microm (2.8 MHz; f/2), 310 microm (5.6 MHz; f/1), and 510 microm (5.6 MHz; f/2). Exposure durations were 10 s, pulse repetition frequencies were 1 kHz, and pulse durations were 1.3 micros (2.8 MHz; f/1), 1.2 micros (2.8 MHz; f/2), 0.8 micros (5.6 MHz; f/1) and 1.1 micros (5.6 MHz; f/2). The lesion surface area and depth were measured for each rat as well as the percentage of rats with lesions per group. Logistic regression analysis and Gaussian-Tobit analysis methods were used to analyze the data. The effects of in situ peak rarefactional pressure and beamwidth were highly significant, but ultrasonic frequency was not significant. In addition, the estimated interaction between in situ peak rarefactional pressure and beamwidth was positive and highly significant. The ultrasound beamwidth incident on the lung surface was shown to strongly affect the percentage and size of ultrasound-induced lung hemorrhage lesions. Even though ultrasonic frequency was an experimental variable, it was not shown to affect the lesion percentage or size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.