Abstract

AbstractOn 26–27 December 2022, Mars experienced an extremely low‐density solar wind stream, which was encountered first by Earth because of the radial alignment of the two planets (i.e., Mars opposition). During this event, two important properties of the ionospheric and magnetospheric states changed significantly in response to the low solar wind ram pressure, as inferred from the superthermal electron observations from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission. The interface between the ionosphere and magnetosphere expanded to thousands of kilometers, outside of the nominal bow shock locations, coinciding with the expansion of the cold planetary ions. Meanwhile, the ambipolar electrostatic potential arising from the ionospheric electron pressure gradient increased from the nominal ∼ −0.7 to ∼ −2 V (relative to the lower ionosphere). This enhanced ambipolar potential likely facilitated the observed ionosphere expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call