Abstract

An elementary introduction is given to the subject of supersymmetry in quantum mechanics which can be understood and appreciated by any one who has taken a first course in quantum mechanics. We demonstrate with explicit examples that given a solvable problem in quantum mechanics with n bound states, one can construct n new exactly solvable Hamiltonians having n − 1, n − 2,…, 0 bound states. The relationship between the eigenvalues, eigenfunctions and scattering matrix of the supersymmetric partner potentials is derived and a class of reflectionless potentials are explicitly constructed. We extend the operator method of solving the one‐dimensional harmonic oscillator problem to a class of potentials called shape‐invariant potentials. It is worth emphasizing that this class includes almost all the solvable problems that are found in the standard text books on quantum mechanics. Further, we show that given any potential with at least one bound state, one can very easily construct one continuous parameter family of potentials having same eigenvalues and s‐matrix. The supersymmetry inspired WKB approximation (SWKB) is also discussed and it is shown that unlike the usual WKB, the lowest order SWKB approximation is exact for the shape‐invariant potentials and further, this approximation is not only exact for large quantum numbers but by construction, it is also exact for the ground state. Finally, we also construct new exactly solvable periodic potentials by using the machinery of supersymmetric quantum mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call