Abstract

Supersymmetric higher derivative gravities define superconformal field theories via the AdS/CFT correspondence. From the boundary theory viewpoint, supersymmetry implies a relation between the coefficients which determine the three point function of the stress energy tensor which can be tested in the dual gravitational theory. We use this relation to formulate a necessary condition for the supersymmetrization of higher derivative gravitational terms. We then show that terms quadratic in the Riemann tensor do not present obstruction to supersymmetrization, while generic higher order terms do. For technical reasons, we restrict the discussion to seven dimensions where the obstruction to supersymmetrization can be formulated in terms of the coefficients of Weyl anomaly, which can be computed holographically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.