Abstract

We present a Lorentz invariant Lagrangian formulation for a supersymmetric Yang–Mills vector multiplet in eleven dimensions (11D). The Lorentz symmetry is broken at the field equation level, and therefore the breaking is spontaneous, as in other formulations of supersymmetric theories in 12D or higher dimensions. We introduce a space-like unit vector formed by the gradient of a scalar field, avoiding the problem of Lorentz non-invariance at the Lagrangian level, which is also an analog of non-commutative geometry with constant field strengths breaking Lorentz covariance. The constancy of the space-like unit vector field is implied by the field equation of a multiplier field. The field equations for the physical fields are formally the same as those of 10D supersymmetric Yang–Mills multiplet, but now with some constraints on these fields for supersymmetric consistency. This formulation also utilizes the multiplier fields accompanied by the bilinear forms of constraints, such that these multiplier fields will not interfere with the physical field equations. Based on this component result, we also present a κ-symmetric supermembrane action with the supersymmetric Yang–Mills backgrounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.