Abstract

It has been shown recently that extended supersymmetry in twisted first-order sigma models is related to twisted generalized complex geometry in the target. In the general case there are additional algebraic and differential conditions relating the twisted generalized complex structure and the geometrical data defining the model. We study in the Hamiltonian formalism the case of vanishing metric, which is the supersymmetric version of the WZ-Poisson sigma model. We prove that the compatibility conditions reduce to an algebraic equation, which represents a considerable simplification with respect to the general case. We also show that this algebraic condition has a very natural geometrical interpretation. In the derivation of these results the notion of contravariant connections on twisted Poisson manifolds turns out to be very useful.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.