Abstract

We analyze the thermodynamics and the critical behavior of the supersymmetric t-J model with long-range interactions. Using the transfer matrix formalism, we obtain a closed-form expression for the free energy per site both for a finite number of sites and in the thermodynamic limit. Our approach, which is different from the usual ones based on the asymptotic Bethe ansatz and generalized exclusion statistics, can in fact be applied to a large class of models whose spectrum is described in terms of supersymmetric Young tableaux and their associated Haldane motifs. In the simplest and most interesting case, we identify the five ground state phases of the model and derive the complete low-temperature asymptotic series of the free energy per site, the magnetization and charge densities, and their susceptibilities. We verify the model’s characteristic spin-charge separation at low temperatures, and show that it holds to all orders in the asymptotic expansion. Using the low-temperature asymptotic expansions of the free energy, we also analyze the critical behavior of the model in each of its ground state phases. While the standard phase is described by two independent conformal field theories (CFTs) with central charge c = 1 in correspondence with the spin and charge sectors, we find that the low-energy behavior of the and phases is that of a single c = 1 CFT. We show that the model exhibits an even richer behavior on the boundary between zero-temperature phases, where it can be non-critical but gapless, critical in the spin sector but not in the charge one, or critical with central charge c = 3/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.