Abstract

We find a class of (2+1)-dimensional spacetimes admitting Killing spinors appropriate to (2,0) adS-supergravity. The vacuum spacetimes include anti-de Sitter (adS) space and charged extreme black holes, but there are many others, including spacetimes of arbitrarily large negative energy that have only conical singularities, and the spacetimes of fractionally charged point particles. The non-vacuum spacetimes are those of self-gravitating solitons obtained by coupling (2,0) adS supergravity to sigma-model matter. We show, subject to a condition on the matter currents (satisfied by the sigma model), and a conjecture concerning global obstructions to the existence of certain types of spinor fields, that the mass of each supersymmetric spacetime saturates a classical bound, in terms of the angular momentum and charge, on the total energy of arbitrary field configurations with the same boundary conditions, although these bounds may be violated quantum mechanically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.