Abstract

We consider a supersymmetric SO(10) model with a SU(3) symmetry of flavour in which fermion masses emerge via the see-saw mixing with superheavy fermions in 16+16bar representations. In this model the dangerous D=5 operators of proton decay are naturally suppressed and flavour-changing supersymmetric effects are under control. The mass matrices for all fermion types (up and down quarks, charged leptons as well as neutrinos) appear in the form of combinations of three rank-1 matrices, common to all types of fermions, with different coefficients that are successive powers of small parameters, related to each other by SO(10) symmetry properties. Two versions of the model are considered, in which approximate grand unification of masses takes place between quarks and leptons of the first family (with very small \tan\beta) or for the ones of the second family (predicting moderate \tan\beta ~ 7-8). The second version exhibits an interesting mechanism of unification of the determinants of the Yukawa matrices of all types of fermions at the GUT scale and it provides a perfect fit of the known data for fermion masses, mixing and CP-violation. It predicts a hierarchical pattern of neutrino masses with non-zero theta_e3, within 2-7 degrees. In addition, it predicts the correct sign of the baryon asymmetry of the Universe via the leptogenesys scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call