Abstract

In a series of recent papers, a special kind of AdS2/CFT1 duality was observed: the boundary correlators of elementary fields that appear in the Lagrangian of a 2d conformal theory in rigid AdS2 background are the same as the correlators of the corresponding primary operators in the chiral half of that 2d CFT in flat space restricted to the real line. The examples considered were: (i) the Liouville theory where the operator dual to the Liouville scalar in AdS2 is the stress tensor; (ii) the abelian Toda theory where the operators dual to the Toda scalars are the mathcal{W} -algebra generators; (iii) the non-abelian Toda theory where the Liouville field is dual to the stress tensor while the extra gauged WZW theory scalars are dual to non-abelian parafermionic operators. By direct Witten diagram com- putations in AdS2 one can check that the structure of the boundary correlators is indeed consistent with the Virasoro (or higher) symmetry. Here we consider a supersymmetric generalization: the mathcal{N} = 1 superconformal Liouville theory in AdS2. We start with the super Liouville theory coupled to 2d supergravity and show that a consistent restriction to rigid AdS2 background requires a non-zero value of the supergravity auxiliary field and thus a modification of the Liouville potential from its familiar flat-space form. We show that the Liouville scalar and its fermionic partner are dual to the chiral half of the stress tensor and the supercurrent of the super Liouville theory on the plane. We perform tests supporting the duality by explicitly computing AdS2 Witten diagrams with bosonic and fermionic loops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.