Abstract

This is the third of a series of three papers in which we give a complete analysis of one loop quantum corrections to the [ital W] pair production in the context of supersymmetric electroweak theory. We adopt the on-shell-mass subtraction scheme of Sakakibara. In this paper we concentrate mainly on the one loop corrections to the differential cross section arising from the box diagrams. Details of the relevant analytic results are given. We also present our results for the total radiative corrections and wherever possible compare the QFD part of our calculation with previous work. We find a change of approximately 3%--4% in the differential cross section if the Higgs boson mass is varied from 10 GeV to 500 GeV. The differential cross section varies approximately 8% if the top mass is varied between 40 GeV and 150 GeV. Our results for the dependence of the differential cross section on the Higgs boson and top quark are in agreement with Bohm et al. In the context of the SM we find moderate corrections at CERN LEP II energies. We find the percentage (with respect to the tree-level) virtual loop corrections arising from the box diagrams (considered in this paper) duemore » to the addition of SUSY particles varies approximately from 0.18% to [minus]5.67%. As a comparison the percentage virtual corrections due to the box diagrams in the SM varies typically from 0.89% to 8.3%. The SM total percentage virtual loop corrections varies typically from 17.4% to 19%. The above comparison is made at the same center-of-mass energy (200 GeV). The first percentage in this comparison is for center-of-mass angles of 10[degree], the second being at 90[degree]. Adding all the corrections up we find that the addition of the supersymmetric particles tends to increase the percentage one loop corrections on the order of 6%--8% provided the photino is kept light. With an accurate measurement at LEP II, one can in principle detect such a deviation away from the standard model.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.