Abstract
We present here a supersymmetric (SUSY) approach for determining excitation energies within the context of a quantum Monte Carlo scheme. By using the fact that SUSY quantum mechanics gives rises to a series of isospectral Hamiltonians, we show that Monte Carlo ground-state calculations in the SUSY partners can be used to reconstruct accurately both the spectrum and states of an arbitrary Schrodinger equation. Since the ground state of each partner potential is nodeless, we avoid any "node" problem typically associated with the Monte Carlo technique. Although we provide an example of using this approach to determine the tunneling states in a double-well potential, the method is applicable to any 1D potential problem. We conclude by discussing the extension to higher dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.