Abstract

AbstractUtilization of self‐healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self‐healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. Herein, a series of urea functionalized poly(dimethyl siloxane)‐based elastomers (U‐PDMS‐Es) are reported with extremely high stretchability, self‐healing mechanical properties, and recoverable gas‐separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross‐linker offers tunable mechanical properties of the obtained U‐PDMS‐Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elastic recovery. The U‐PDMS‐Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain‐dependent elastic recovery behavior of U‐PDMS‐Es is also studied. After mechanical damage, the U‐PDMS‐Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. The U‐PDMS‐Es are also demonstrated to exhibit recoverable gas‐separation functionality with retained permeability/selectivity after being damaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.