Abstract
AbstractAlthough high pressure enables alloying between hydrogen and iron, hydrogen‐to‐iron molar ratio (H/Fe) so far found in experiments is mostly limited to 1 in the close‐packed iron metal under high pressure. We report a H/(Fe + Ni) ratio of 1.8 ± 0.1 from (Fe,Ni)Hx (or x ≥ 1.8) quenched from liquid, exceeding the amounts so far reported for densely packed Fe alloys. From the metastable behavior of the frozen (Fe,Ni)Hx liquid during decompression, we infer that the amount is a lower bound and therefore even a greater amount of H can be dissolved in the liquid part of Fe‐rich cores of planets. The significant H storage capacity of liquid Fe‐Ni alloy is important to consider for potential storage of H in the interiors of low‐density planets as well as rocky planets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.