Abstract

In this paper, the impact of temperature fluctuations in the entanglement of two qubits described by a spin-1/2 XX model is studied. To describe the out-of-equilibrium situation, superstatistics is used with fluctuations given by a χ^{2}-distribution function, and its free parameters are chosen in such a way that resembles the nonadditive Tsallis thermodynamics. In order to preserve the Legendre structure of the thermal functions, particular energy constraints are imposed on the density operator and the internal energy. Analytical results are obtained using an additional set of constraints after a parametrization of the physical temperature. We show that the well-known parametrization may lead to undesirable values of the physical temperature so that by analyzing the entropy as a function of energy, the correct values are found. The quantum entanglement is obtained from the concurrence and is compared with the case when the Tsallis restrictions are not imposed on the density operator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call