Abstract
SummaryNature-inspired superamphiphilic surfaces have drawn tremendous attention owing to its extreme liquid-loving behaviors. Herein, a micro-organized nano-channel (Mo-Na) superamphiphilic anodic aluminum oxide (AAO) surface with long-lasting superamphiphilic property is prepared by a facile one-step anodization method with controllable temperature change. Analysis of dynamic wetting behaviors on superamphiphilic Mo-Na AAO surfaces for various liquids reveals that the spreading factor is in negative correlation with the surface tension and liquid polarity. Detailed observation of the three-phase contact line shows a micro-scale capillary film on superamphiphilic Mo-Na AAO surfaces, which results from the horizontal component of the capillary force. Taking advantage of the superamphiphilic property, water droplets can spread completely on these Mo-Na AAO surfaces within a short time, which can be applied for efficient heat dissipation. Moreover, the unique AAO surface with Mo-Na structures also offers an effective template for future efforts in AAO-based composite devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.