Abstract

Nanofluids hold promise for a wide range of areas of industry. However, understanding the wetting behavior and deposition formation in the course of drying and spreading of nanofluids, particularly containing surfactants, is still poor. In this paper, the evaporation dynamics of quantum dot-based nanofluids and evaporation-driven self-assembly in nanocolloidal suspensions on hexamethyldisilazane-, polystyrene-, and polypropylene-coated hydrophobic surfaces have been studied experimentally. Moreover, for the very first time, we make a step toward understanding the wetting dynamics of superspreader surfactant-laden nanofluids. It was revealed that drying of surfactant-free quantum dot nanofluids in contrast to pure liquids undergoes not three but four evaporation modes including last additional pinning mode when the contact angle decreases while the triple contact line is pinned by the nanocrystals. In contrast to previous studies, it was found out that addition of nanoparticles to aqueous surfactant solutions leads to deterioration of the spreading rate and to formation of a double coffee ring. For all surfaces examined, superspreading in the presence and absence of quantum dot nanoparticles takes place. Despite the formation of coffee rings on all substrates, they have different morphologies. In particular, the knot-like structures are incorporated into the ring on hexamethyldisilazane- and polystyrene-coated surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.