Abstract

In Hajek et al. (J Symb Logic 65(2):669–682, 2000) the authors introduce the concept of supersound logic, proving that first-order Godel logic enjoys this property, whilst first-order Łukasiewicz and product logics do not; in Hajek and Shepherdson (Ann Pure Appl Logic 109(1–2):65–69, 2001) this result is improved showing that, among the logics given by continuous t-norms, Godel logic is the only one that is supersound. In this paper we will generalize the previous results. Two conditions will be presented: the first one implies the supersoundness and the second one non-supersoundness. To develop these results we will use, between the other machineries, the techniques of completions of MTL-chains developed in Labuschagne and van Alten (Proceedings of the ninth international conference on intelligent technologies, 2008) and van Alten (2009). We list some of the main results. The first-order versions of MTL, SMTL, IMTL, WNM, NM, RDP are supersound; the first-order version of an axiomatic extension of BL is supersound if and only it is n-potent (i.e. it proves the formula \({\varphi^{n}\,\to\,\varphi^{n\,{+}\,1}}\) for some \({n\,\in\,\mathbb{N}^+}\)). Concerning the negative results, we have that the first-order versions of ΠMTL, WCMTL and of each non-n-potent axiomatic extension of BL are not supersound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.