Abstract

A coherent jet oxygen supply plays a key role in the process of electric arc furnace steelmaking: it provides the necessary oxygen for the smelting of molten steel and promotes the flow of the molten pool. Compared with coherent jets in current use, the supersonic combustion coherent jet shrouded in supersonic methane gas could improve the impact capacity and stirring intensity of the molten pool. In order to reduce the smelting cost, the characteristics of the supersonic combustion coherent jet shrouding the supersonic methane and nitrogen mixtures must be studied. Computational fluid dynamics software is used to simulate the supersonic combustion coherent jet under various methane–nitrogen mixing conditions. The six-component combustion mechanism of methane and the Eddy Dissipation Concept combustion reaction model are selected. In agreement with thermal experiments, the simulation results show that the inclusion of a small amount of nitrogen has little effect on the combustion of supersonic shrouding methane gas. However, as the nitrogen content increases, the combustion region of supersonic shrouding gas becomes shorter in length, resulting in decreases in the lengths of the high-temperature, low-density region, and the high-turbulence-intensity region. These effects weaken the ability of the shrouding gas to envelop the main oxygen jet. The potential core length of the main oxygen jet decreases significantly; this decrease first accelerates and then decelerates. These results demonstrate the feasibility of including a small amount of nitrogen (about 10 wt%) in the supersonic shrouding methane gas without substantial negative impacts on the characteristics of the supersonic combustion coherent jet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call