Abstract

The sound field produced by a supersonic propeller operating in a uniform flow is investigated. The main interest is the effect of the finite forward flight speed on the directivity of the sound field as seen by an observer on the aircraft. It is found that there are cones of silence on the axis of the propeller. The semiapex angles on these cones are equal fore and aft of the propeller plane, and depend on the tip Mach number only. The Fourier coefficients of the acoustic pressure contain the Doppler amplification factor. The sound field weakens in the upstream direction and strengthen downstream. Kinematic considerations of the emitted Mach waves not only confirm these results, but also provide physical insight into the sound generation mechanism. The predicted zone of silence and the Doppler amplification factor are compared to the theoretical prediction of shock wave formation and the flight test of the SR3 propeller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.