Abstract

Nanostructured titanium dioxide films have been deposited by supersonic cluster beam deposition (CBD). Nanoparticles are produced by a pulsed microplasma cluster source (PMCS) and selected by aerodynamic separation effects. The as-deposited film is a complex mixture where amorphous material coexists, at the nanoscale, with anatase and rutile crystal phases. The nanocrystalline fraction of the film is characterized by crystal size ranging from 100 nm to less than 5 nm. We have characterized the film structure by transmission electron microscopy, Raman spectromicroscopy, X-ray diffraction, and UV-visible spectroscopy showing that correlations exist between cluster size and film properties. In particular if very small clusters are deposited, the film shows a predominant rutile phase whereas larger clusters form films with mainly anatase structure. Our observations suggest that phonon confinement effects are responsible for a significant shift and broadening observed for the Raman peaks. In addition, optical gap tuning is provided by mass selection: large clusters assembling generates a film with 3.22 eV optical gap, while smallest clusters 3.52 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.