Abstract

Given an integer g ≥ 2 and a class of finite groups let N(g, ) denote the order of the largest group in that a compact Riemann surface of genus g admits as a group of automorphisms. For the classes of all finite groups, cyclic groups, abelian groups, nilpotent groups, p-groups (given p), soluble groups and finally for metabelian groups, an upper bound for N(g, ) as well as infinite sequences for g for which this bound is attained were found in [5, 6, 7, 8, 13], [4], [10], [15], [16], [1], [2] respectively. This paper deals with that problem for the class of finite supersoluble groups i.e. groups with an invariant series all of whose factors are cyclic. In addition, it goes further by describing exactly those values of g for which the bound is attained. More precisely we prove:

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call