Abstract

We study the properties of t-t'-V model of hard-core bosons on the triangular lattice that can be realized in optical lattices. By mapping to the spin-1/2 XXZ model in a field, we determine the phase diagram of the t-V model where the supersolid characterized by the ordering pattern (x,x,-2x') ("ferrimagnetic" or SS A) is a ground state for chemical potential \mu >3V. By turning on either temperature or t' at half-filling \mu =3V, we find a first order transition from SS A to the elusive supersolid characterized by the (x,-x,0) ordering pattern ("antiferromagnetic" or SS C). In addition, we find a large region where a superfluid phase becomes a solid upon raising temperature at fixed chemical potential. This is an analog of the Pomeranchuk effect driven by the large entropic effects associated with geometric frustration on the triangular lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.