Abstract

The system of a transversely pumped Bose-Einstein condensate (BEC) coupled to a lossy ring cavity can favor a supersolid steady state. Here we find the existence of supersolid gap soliton in such a driven-dissipative system. By numerically solving the mean-field atom-cavity field coupling equations, gap solitons of a few different families have been identified. Their dynamical properties, including stability, propagation, and soliton collision, are also studied. Due to the feedback atom-intracavity field interaction, these supersolid gap solitons show numerous new features compared with the usual BEC gap solitons in static optical lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.