Abstract
We present abundance measurements for two super Lyman Limit systems (SLLS; quasar absorption line systems with 10^19 cm^-2 < N_HI < 10^20.3 cm^-2) selected from a set of metal-strong absorbers in the Sloan Digital Sky Survey quasar database. After applying estimate corrections for photoionization effects, we derive gas-phase metallicities of [M/H]=+0.7 +/- 0.2 dex for the SLLS at z=1.7749 toward SDSS0927+5621 and [M/H]=+0.05 +/- 0.1 dex for the SLLS at z=1.7678 toward SDSS0953+5230. The former exhibits among the highest gas metallicity of any astrophysical environment and its total metal surface density exceeds that of nearly every known damped Lya system. The properties of these absorbers -- high metallicity and large velocity width (> 300 km/s) -- resemble those of gas observed in absorption in the spectra of bright, star-forming galaxies at high redshift. We discuss the metal mass density of the SLLS based on these observations and our ongoing SLLS survey and argue that a conservative estimate to the total metal budget at z=2 is greater than 15% of the total, suggesting that the metal-rich LLS may represent the dominant metal reservoir in the young universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.