Abstract

We study a system of globally coupled FitzHugh-Nagumo equations as a stochastic resonator. Each unit is either excitatory or inhibitory. If the numbers of units of both types are nearly equal (balanced coupling), we observe the presence of multistable oscillatory states with different excitation or firing rates. In the presence of noise, random transitions between high- and low-frequency oscillatory states are observed and the resultant firing pattern is long-range correlated. Compared to other coupling types, the system demonstrates considerably improved rate-coding ability for both subthreshold and suprathreshold signals, even with a tiny level of noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.