Abstract

In vivo visualization of the microvasculature is feasible with super-resolution ultrasound imaging (SRI), but the method needs more affirmative data before clinical use. The kidneys have a rich vasculature, and microvascular dysfunction decreases the kidney function. Therefore, detection of subtle renal microvascular changes could benefit patients with renal disease. We hypothesized that our SRI setup can visualize the microvascular network of two healthy rat kidneys and subsequently demonstrate microvascular flow changes immediately after ischemia- reperfusion. The left kidney of two male Sprague-Dawley rats was scanned during laparotomy using a customized BK5000 scanner, an X18L5s transducer, and interleaved contrast and B-mode sequences with focused beam transmission. Images were acquired over 10 min using SonoVue (1:10) as the contrast agent. After a baseline scan, one rat had the renal vein clamped, while the other rat had the renal artery clamped, both for 45 min. The kidneys were rescanned immediately after clamp release and after 60 min of reperfusion. Motion correction was applied before microbubble (MB) detection. The characteristic renal microvascular structure was visualized with anatomical distinction between the dense cortical vascular network and the straight vessels of the medulla. Immediately after vein clamp release, almost no MBs perfused the medullary vessels. After 60 min of reperfusion, MBs refilled the renal vascular bed, but with a slower velocity compared with the baseline scan. The results after artery clamping were subtler, with more MBs perfusing the medulla immediately after clamp release compared with the vein clamping. The results imply that this SRI setup can evaluate different stages of ischemic kidney disease in rats as it can visualize the entire renal vascular bed and differentiate the pattern of reperfusion in two types of ischemic injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.