Abstract

Time resolution of multipath delay profiles measured by using the autocorrelation of a pseudonoise (PN) code sequence is generally limited by the chip interval of the PN code sequence. A superresolution PN correlation method (SPM) is proposed which improves the time resolution of delay profiles measured by the conventional PN correlation method. The SPM is based on a decomposition of the eigenvector space of the correlation matrix of the delay profile data vector and gives the number of paths and their delay times with higher resolution. It is verified by computer simulations and experiments using coaxial delay lines that the SPM can resolve two paths with a delay difference of a few tenths of the chip interval. The applicability of the SPM to the analysis of an indoor multipath environment in which many delayed waves arrive with short delay differences is demonstrated by an indoor radio propagation experiment at 2.3 GHz.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.