Abstract

Super-resolution reconstruction of face image is the problem of reconstructing a high resolution face image from one or more low resolution face images. Assuming that high and low resolution images share similar intrinsic geometries, various recent super-resolution methods reconstruct high resolution images based on a weights determined from nearest neighbors in the local embedding of low resolution images. These methods suffer disadvantages from the finite number of samples and the nature of manifold learning techniques, and hence yield unrealistic reconstructed images. To address the problem, we apply canonical correlation analysis (CCA), which maximizes the correlation between the local neighbor relationships of high and low resolution images. We use it separately for reconstruction of global face appearance, and facial details. Experiments using a collection of frontal human faces show that the proposed algorithm improves reconstruction quality over existing state-of-the-art super-resolution algorithms, both visually, and using a quantitative peak signal-to-noise ratio assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.