Abstract
New concepts for superresolution fluorescence microscopy by subsequent localization of single molecules using photoswitchable or photoactivatable fluorophores are rapidly emerging and provide new ways to resolve structures beyond the diffraction limit. Here, we demonstrate that superresolution imaging can be carried out with practically every single-molecule compatible, synthetic fluorophore by controlling their emission properties. We prepare dark states by removing oxygen that extends the triplet state lifetime to several milliseconds. We further increase the duration of the off-states using electron transfer reactions to create radical ion states of severalfold longer lifetimes. Imaging single molecules, actin filaments, and microtubules in fixed cells as well as simulations demonstrate that the thus created dark states are sufficiently long for resolution of approximately 50 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.