Abstract

Fluorescent proteins (FPs) have become popular imaging tools because of their high specificity, minimal invasive labeling and allowing visualization of proteins and structures inside living organisms. FPs are genetically encoded and expressed in living cells, therefore, labeling involves minimal effort in comparison to approaches involving synthetic dyes. Photoactivatable FPs (paFPs) comprise a subclass of FPs that can change their absorption/emission properties such as brightness and color upon irradiation. This methodology has found a broad range of applications in the life sciences, especially in localization-based super-resolution microscopy of cells, tissues and even entire organisms. In this review, we discuss recent developments and applications of paFPs in super-resolution localization imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call